Allied Telesis

IE360 Series

Industrial Ethernet Layer 3 Switches

The IE360 Series Industrial Ethernet Layer 3 switches provide seamless data transfer for critical infrastructure sectors.

Overview

Allied Telesis IE360 Series switches are the perfect solution for secure connectivity for critical infrastructure and industrial automation networks.

They feature MACsec to protect your critical data against sniffing exploits, spoofing, and manipulation, making secure communication possible between control centers and remote sites. These hardened switches can withstand environmental conditions such as electromagnetic noise, wide temperature, humidity, vibration, and the risk of being exposed to flammable substances.

The IE360 Series provides network infrastructure for many vertical markets and related applications, such as:

Cranes & Logistics

Control of automated stacker cranes and other devices that boost the efficiency of dynamic warehouse environments.

 Industrial automation and process control

Interconnection of machines, IoT devices, sensors, and more. Instant communication between systems and people enables improved efficiency and resilience in manufacturing environments.

- Marine control and monitoring Seamless communication for vessels such as ships, high speed light water craft, and offshore units.
- Oil and Gas
 Integrated operations strategies in upstream and midstream processes enhancing remote surveillance and control capabilities.
- Railway transportation signalling and telecommunications
 Control signaling and telecommunication for improved safety, risk management, operating efficiency, and signage.

- Railway transportation fixed installation for power supply Substation automation and control systems which manage electric power delivery.
- Smart grid

Self-sufficient systems for automatic mitigation of power outages, service disruptions, and power quality problems. Accommodating power generation options such as distributed energy reserves, photovoltaic, wind, and fuel cells.

Wastewater treatment
 Industrial sewage treatment plants
 for efficient and reliable water
 purification. Control systems ensure
 process optimization by intelligent
 control, regulation, and monitoring.

IT/OT convergence

Improve productivity and decisionmaking by integrating your operational technology (OT) and information technology (IT). Use the intelligence of Industry 4.0 to collect, analysis, and manage all your data in real time.

Network automation and orchestration

Powerful automation options include Allied Telesis Autonomous Management Framework[™] Plus (AMF Plus), and open standard-based northbound API.

For easy integration into complex networks comprising physical, virtual, and multi-vendor devices, the IE360 Series features:

- NETCONF/RESTCONF + YANG data modelling for network automation.
- OpenFlow v1.3 for Software Defined Networking (SDN) orchestration.

Key Features

- 1/10 Gbits uplink ports with MACsec data protection
- ▶ 100 Mbits and 1Gbits uplink ports
- EMC for power utilities (IEC 61850-3, IEEE 1613)
- ► AlliedWare PlusTM operating system
- ► Allied Telesis Autonomous Management Framework PlusTM (AMF Plus)
- NETCONF/RESTCONF with YANG data modelling
- ▶ OpenFlow v1.3 for SDN
- ▶ QoS with traffic shaping
- Efficient forwarding of multicast streams
- Routing capabilities (BGP, ECMP, OSPF, RIP, and static)
- Extensive features for cybersecurity and denial of service prevention
- ▶ MACsec encryption @256-bits
- ► Active Fiber MonitoringTM (AFM)
- ► High Availability networking (EPSRing[™], ITU-T G.8032, MRP)
- Automation and control protocols (Modbus/TCP, PROFINET IO¹)
- Upstream Forwarding Only (UFO)
- ► IEEE 802.3bt PoE++ sourcing (up to 95W)
- 360W of PoE power budget with dynamic power allocation
- Continuous PoE
- Extended operating temp range: -40°C to 75°C (tested @85°C)
- Fanless design
- Graceful thermal shutdown
- Protection circuits
- Alarm monitoring with trigger facility
- Redundant power inputs with voltage boost converter
- Certified for hazardous location¹
 - ¹ Contact sales representative for availability.

Key Features

Network Automation

- AMF Plus is a suite of tools providing centralized control and network automation, as well as visual intent-based network management. It has the the intelligence to set-up, optimize, and maintain the network according to predefined goals and policies.
- Powerful features like centralized management, auto backup, auto upgrade, auto provisioning and auto recovery enable plug-and-play networking and zero touch management.
- Integration with our Vista Manager visual monitoring and management platform means AMF Plus also provides intent-based features like:
- Health monitoring to easily investigate, analyze and improve overall network health.
- Smart ACLs to control and secure the resources that clients use in the network.
- intent-based QoS to deal with network bandwidth contention.
- AMF Plus is scalable and can be either deployed integrated into Allied Telesis equipment, or on multi-tenant cloud architecture.

Northbound Interfaces

- Open standard-based interfaces are supported to easily integrate with existing management systems.
- NETCONF/RESTCONF with YANG data modeling provides a standardized way to represent data and securely configure devices.
- OpenFlow is a key technology for SDN orchestration. SDN controllers and other tools support automated behavior in a network, and allow customized applications and services to be run.

Micro-segmentation for Network Security

- Micro-segmentation enhances converged IT/ OT network security by reducing the number of entry points for attackers or intruders. Isolating applications, data, and endpoints hampers the ability of intruders or malware to move within the network.
- SDN network orchestration enables self-learning Artificial Intelligence to propagate and adapt security policies to mitigate evolving cyber threats.

MACsec data protection

- Secure connectivity in critical infrastructure is essential. For example, power utilities require communication between the control center and remote sites to use point-to-point tunnels protected by MACsec.
- MACsec is a Layer 2 protocol that relies on GCM-AES cipher suites encryption to offer integrity, confidentiality, and origin authentication.
- This protects against data packet sniffing exploits, spoofing, and manipulation.

The advantages are:

- Secure communication beyond the link layer
- Line-rate throughput
- Microsecond latency
- Set-and-forget management
- Near-zero overhead
- Low total cost of ownership
- ► The IE360 Series features MACsec encryption on the 1/10Gbits uplink ports.

Resiliency

- ► EPSRing[™] and ITU-T G.8032 ERPS enable a protected ring capable of recovery within as little as 50ms. These features are perfect for high performance and high availability.
- High-availability automation networks are supported with Media Redundancy Protocol (MRP) as defined by IEC62439-2. MRP used in ring networks allows up to 50 devices to have guaranteed and deterministic switchover behavior.
- Spanning Tree protocols RSTP and MSTP, along with static LAGs and the dynamic Link Aggregation Control Protocol (LACP), support high availability in star network topologies.

Automation and Control Protocols

 Automation and control protocols enable integration with OT supervisory and control systems.

PROFINET IO is a communication protocol for data exchange between I/O controllers, like SCADA and PLC, with I/O devices over Ethernet networks.

Supporting PROFINET certification,² the IE360 Series have I/O device properties that provide diagnostic data.

They support these communication channels:

- Standard TCP/IP (PROFINET NRT): suitable for non-deterministic functions such as parametrization, video/audio transmissions and data transfer to higher level IT systems.
- Real Time (PROFINET RT): TCP/IP layers are bypassed in order to have deterministic performance for automation applications.
- Modbus/TCP is intended for supervision and control of automation equipment. It is a variant of the MODBUS protocol using TCP/IP for communications on Ethernet networks.

The IE360 Series supports read/write register access and heartbeat functionality for efficient process control of both SCADA and slave devices.

Precise Time Synchronization (IEEE 1588)

The IEEE 1588 Precise Time Protocol (PTP) is a fault tolerant method enabling clock synchronization in packet-based networks. This deterministic communication method provides precise timing for automation applications and measurement systems.

² Contact sales representative for availability.

 In power systems, time synchronization is required for synchrophasor measurements, protective line measurements, analog measurements, and SCADA time stamping.

Synchrophasors are instruments that measure the magnitude and phase angle of line voltage and current at multiple locations across the power grid. These measurements enable detection of instabilities so appropriate action can be taken.

SCADA systems require IED events to be logged with 1ms accuracy, which is achieved using PTP for timing distribution.

The IE360 Series supports PTP power profiles as a Transparent Clock, and performs an active role in Ethernet networks to reduce the effects of link delay and residence time.²

Quality of Service (QoS)

Comprehensive low-latency wire-speed QoS provides flow-based traffic management with full classification, prioritization, traffic shaping and min/max bandwidth profiles. Enjoy boosted network performance and guaranteed delivery of business-critical services and applications.

sFlow

SFlow is an industry-standard technology for monitoring high-speed switched networks. It provides complete visibility into network use, enabling performance optimization, usage accounting/billing, and defense against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic.

Active Fiber Monitoring (AFM)

Active Fiber Monitoring prevents eavesdropping on fiber communications by monitoring received optical power. If an intrusion is detected, the link can be automatically shut down, or an operator alert can be sent.

VLAN Mirroring (RSPAN)

VLAN mirroring allows traffic from a port on a remote switch to be analyzed locally. Traffic being transmitted or received on the port is duplicated and sent across the network on a special VLAN.

VLAN Translation

 VLAN Translation allows traffic arriving on a VLAN to be mapped to a different VLAN on the outgoing paired interface.

VLAN Access Control List (ACLs)

 ACLs simplify access and traffic control across entire segments of the network. They can be applied to a VLAN as well as a specific port.

Upstream Forwarding Only (UFO)

 UFO lets you manage which ports in a VLAN can communicate with each other, and which only have upstream access to services, for secure multi-user deployment.

Key Features continued

Dynamic Host Configuration Protocol (DHCP) Snooping

DHCP servers allocate IP addresses to clients, and the switch keeps a record of addresses issued on each port. IP source guard checks against this DHCP snooping database to ensure only clients with specific IP and/or MAC address can access the network. DHCP snooping can be combined with other features, like dynamic ARP inspection, to increase security in Layer 2 switched environments, and also provides a traceable history, which meets the growing legal requirements placed on service providers.

Link Layer Discovery Protocol–Media Endpoint Discovery (LLDP–MED)

LLDP-MED extends LLDP basic network endpoint discovery and management functions. LLDP-MED allows for media endpoint specific messages, providing detailed information on power equipment, network policy, location discovery (for Emergency Call Services) and inventory.

Port Based DHCP IP Address Assignment

- DHCP server port-based address allocation ensures a replacement device receives the same IP address - even though the client-identifier or client hardware address has changed.
- That supports Industrial Automation and Control Systems (IACS), which are very sensitive to operation outages. When devices such as sensors and actuators fail, the must be replaced immediately.

Assigning the same IP address to the replaced device allows the OT supervisory system to take control and resume operation as quickly as possible, minimizing downtime.

Power over Ethernet (PoE)

- PoE provides flexibility and reduced cost by removing the need for a separate power connection to media endpoints. PoE++ supports higher power devices such as advanced security cameras, kiosks, POS terminals, Wi-Fi 6 access points, and LED light fixtures.
- IE360 Series switches comply with the standard IEEE 802.3bt and maintain backwards compatibility with previous methods. They feature the following PoE types:
 - IEEE 802.3af,
 - IEEE 802.3at Type 1 PoE @15.4W
 - IEEE 802.3at Type 2 PoE+ @30W
- IEEE 802.3at 4PPoE Hi-PoE @60W
- IEEE 802.3bt type 3 PoE++ @60W
- IEEE 802.3bt type 4 PoE++ @95W
- You may configure the overall PoE power budget to match the real capabilities of the external Power Supply Unit (PSU). The PoE power budget may be allocated automatically and dynamically, based on the current usage of each powered device.

If the devices connected to a switch require more power than the switch can deliver, the switch will deny power to some ports, according to the assigned priority.

Continuous PoE

Continuous PoE allows the switch to be restarted without affecting the supply of power to connected devices. Smart lighting, security cameras, and other PoE devices will continue to operate during a software upgrade on the switch.

Alarm Monitoring and Trigger facility

- The IE360 Series alarm facility monitors the switch and responds to any problems. Example of alarm events include:
- Main power supply failure
- Over-temperature
- Port link down
- Alarm Input
- System power budget exceeded
- PoE device exceeds port power budget
- Triggers based on alarm events provide a smart mechanism that automatically changes the network configuration to reduce downtime.

Alarm Input/Output

- Alarm Input and Output responds to an event instantly and automatically with predefined actions. The 2-pin terminal blocks may be connected to sensors and actuator relays.
- Alarm Input receives signals from external devices like motion sensors and magnets that trigger specific actions when something changes.
- Alarm Output controls external devices like strobes and sirens when an event occurs.

Protection Circuits

- Optimized protection circuits guard against the following abnormal conditions:
 - Reverse input voltage polarity
 - Over- and under-voltage
 - Over-current, peak-current and short-circuit
 - Over-temperature

Enhanced Thermal Shutdown

- Enhanced thermal shutdown acts to restrict PoE power and services when the switch exceeds a safe operating temperature.
- The system restores operation when the temperature returns to acceptable levels.

Dual power inputs with voltage booster

- The redundant power inputs are for higher system reliability and to allow UPS emergency power over an extended period of time.
- The integrated voltage regulator allows a wide input voltage range and ensures the PoE output voltage always stays at the rated value, regardless the fluctuation on input voltage.

Hazardous Locations

- Hazardous locations include areas where flammable liquids, gases, vapors, or combustible dust exists in enough quantity to potentially cause an explosion or fire. Many applications, especially in the chemical, petrochemical (oil and gas), and mining industries require explosion protected equipment.
- The IE360 Series is designed for use in hazardous locations in accordance with US National Electric Code Publication 70 (NEC 70) and the European ATEX directive.³

Sturdy connectors for PoE++ sourcing @95W

- When unplugging a PoE++ powered device an arc may occur damaging the contact protection of the connector. Once the protective layer is damaged corrosion may continue to weaken the quality of connection. This can result in increased signal attenuation or even total loss of connection.
- The IE360 Series are equipped with RJ45 connectors that comply with the unmating (unplugging) under electrical load requirements standard as prescribed by IEC 60512-99-002. This compliance guarantees the level of contact resistance for connectors used for PoE++ 95W power supply.

Premium Software License

By default, the IE360 Series offers a comprehensive feature set that includes Layer 2 switching, static routing and IPv6 management features. The feature set can easily be upgraded with premium software licenses.

³ Contact sales representative for availability.

Key Solutions

Energy systems are a critical infrastructure of modern society that serve as the backbone for economic activity, security, and consumers' daily lives.

With the migration to smart grids, there are an increased number of potentially vulnerable entry points through which the grid can be disrupted. A critical infrastructure must therefore employ sophisticated and scalable security measures to prevent malicious attacks.

Operators of Essential Services (OES) either operate selfowned private networks, or lease services from carriers/ service providers. OES have adopted MACsec (IEEE 802.1AE) to protect multiple communication flows over the same physical link. It can be used as an alternative to IPsec, as it can protect multicast, broadcast, and non-IP packets.

Key Solutions

MACsec secures communication between an operation center and remote sites with line-rate throughput, as a Layer 2 security protocol that provides point-to-point security on Ethernet links. Data remains encrypted and secure during the entire transmission between sender and receiver even if there are multiple hops in between.

The IE360 Series supports MACsec with the Advanced Encryption Standards CGM-AES-256 and CGM-AESXPN-256, which are the most powerful symmetric encryption algorithms that use a 256-bit key to scramble data into an unreadable format.

Specifications

PRODUCT	10/100/1000T (RJ-45) COPPER PORTS	100/1000X SFP PORTS	1/10G SFP+ PORTS	TOTAL PORTS	POE ENABLED Ports	SWITCHING Fabric	FORWARDING RATE
IE360-12GHX	8	2	2 w/ MACsec	12	8	60Gbps	44.6Mpps
IE360-12GTX	8	2	2 w/ MACsec	12	-	60Gbps	44.6Mpps

Performance

RAM memory	512MB DDR SDRAM
ROM memory	128MB flash
MAC address	16K entries
Packet Buffer	2 MBytes (16 Mbits)
Priority Queues	8
Simultaneous VLANs	4K
VLAN ID range	1-4094
Jumbo frames	12KB L2 jumbo frames
Multicast groups	1,023 (Layer 2 and Layer 3)

Other Interfaces

Type	Serial console (UART)
Port no.	1
Connector	RJ-45 female
Type	USB2.0 (Host Controller Class)
Port no.	1
Connector	Type A receptacle
Type	Alarm input (2mA @5.0Vdc)
Port no.	1
Connector	2-pin Terminal Block
Type	Alarm output (1A @30Vdc)
Port no.	1

Flexibility and Compatibility

 SFP ports support any combination of Allied Telesis 100Mbps and 1Gbps SFP modules listed in this document under Ordering Information

Reliability

- ▶ Modular AlliedWare[™] operating system
- Protection circuits against abnormal operations
- Redundant power input
- Full environmental monitoring of temperature and internal voltage levels
- ► Enhanced Thermal Shutdown

Industrial Automation

- IEEE 1588 PTP one-step variant
- IEEE 1588 PTP two-step variant⁴
- IEEE 1588 PTP End-to-End Transparent Clock
- ▶ IEEE 1588 PTP Peer-to-Peer Transparent Clock⁴
- ▶ IEEE 1588 PTP profile: Default
- ▶ IEEE 1588 PTP profile: Power (IEEEC C37.238)⁴
- ▶ IEEE 1588 PTP profile: Power (IEC 61850-9-3)⁴
- Modbus/TCP with master/slave heartbeats facility
- PROFINET IO non-real-time and real-time (NRT/RT)⁴

Management Features

- ► Allied Telesis Autonomous Management FrameworkTM Plus (AMF Plus) node
- NETCONF/RESTCONF northbound interface with YANG data modelling
- OpenFlow northbound interface
- Web-based Graphical User Interface (GUI)
- Industry-standard CLI with context-sensitive help
- Powerful CLI scripting engine

NETWORK SMARTER

- Built-in text editor
- Event-based triggers allow user-defined scripts to be executed upon selected system events
- ► Link Layer Discovery Protocol (LLDP)
- Link Layer Discovery Protocol Media Endpoint Discovery (LLDP-MED)
- SNMPv1/v2c/v3 support
- Comprehensive SNMP MIB support for standard based device management
- Console management port on the front panel for ease of access
- Front panel LEDs provide at-a-glance PSU status, PoE status, and fault information
- Eco-friendly mode allows ports and LEDs to be disabled to save power
- USB interface allows software release files, configurations, and other files to be stored for backup and distribution to other devices
- Recessed Reset button

IPv4 Features

- Black hole routing
- Directed broadcast forwarding
- ► Equal Cost Multi Path (ECMP) routing
- Dynamic routing (OSPF, RIP, and BGP)
- Static unicast and multicast routes for IPv4
- UDP broadcast helper (IP helper)

IPv6 Features

- Device management over IPv6 networks with SNMPv6, Telnetv6 and SSHv6
- IPv4 and IPv6 dual stack
- IPv6 hardware ACLs
- ▶ Dynamic routing (OSPFv3, RIPng, and BGP+)
- Static unicast routing for IPv6
- ▶ IPv6 Ready certified

Multicasting Features

- Internet Group Management Protocol (IGMPv1/v2/v3)
- IGMP snooping with fast leave
- ► IGMP query solicitation
- Multicast Listener Discovery (MLDv1/v2)
- MLDv2 for IPv6
- MLD snooping
- IGMP/MLD proxy (multicast forwarding)
- Protocol Independent Multicast Dense Mode (PIM-DM)
- Protocol Independent Multicast Sparse Mode (PIM-SM)

Quality of Service

- 8 priority queues with a hierarchy of high priority queues for real-time traffic, and mixed scheduling, for each switch port
- ► Extensive remarking capabilities
- IP precedence and DiffServ marking based on Layer 2, 3 and 4 headers

⁴ Contact sales representative for availability.

- Limit bandwidth per port or per traffic class down to 64kbps
- ▶ Policy-based QoS and traffic shaping
- Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- Policy-based storm protection
- Strict priority, weighted round robin or mixed scheduling
- ► Taildrop for queue congestion control
- Wirespeed traffic classification with low latency for real-time streaming media applications

Resiliency Features

- Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic
- Dynamic link failover (host attach)
- ► Ethernet Protection Switching Ring (EPSRTM) with SuperLoop Prevention (EPSR-SLPTM)
- Ethernet Ring Protection Switching (ITU-T G.8032 ERPS)
- ► Link Aggregation Control Protocol (LACP)
- Loop detection and thrash limiting
- Media Redundancy Protocol (MRP)
- Multiple Spanning Tree Protocol (MSTP)
- PVST+ compatibility mode
- ▶ Rapid Spanning Tree Protocol (RSTP)
- ▶ Router Redundancy Protocol (RRP) snooping
- ► Spanning Tree Protocol (STP) root guard
- ▶ Virtual Router Redundancy Protocol (VRRPv3)

Security Features

- Access Control Lists (ACLs) based on layer 3 and 4 headers
- Authentication, Authorization and Accounting (AAA)

MAC address filtering and MAC address lockdown

MACsec encryption (cipher suite: CGM-AES-128,

► Auth-fail and guest VLANs

Dynamic VLAN assignment

manage endpoint security

Secure Copy (SCP)

IEEE 802.1X

Password protected bootloader

customers using the same VLAN

HTTP over TLS (HTTPS)

- ▶ Configurable ACLs for management traffic
- BPDU protection

►

 DHCP snooping, IP source guard and Dynamic ARP Inspection (DAI)
 DoS attack blocking and virus throttling

CGM-AES-256, CGM-AES-XPN-256)

▶ Network Access and Control (NAC) features

Port-based learn limits (intrusion detection)

Strong password security and encryption

TACACS+ authentication and accounting

Private VLANs and port isolation for multiple

RADIUS local server (100 users) and accounting

▶ Tri-authentication: MAC-based, web-based and

IE360 | 5

IE360 Series | Industrial Ethernet Layer 3 Switches

Virtual LAN Features

- ► Generic VLAN Registration Protocol (GVRP)
- VLAN stacking, Q-in-Q
- VLAN translation
- Upstream Forwarding Only (UFO)

Services

- ▶ Domain Name System (DNS) client and relay
- DNSv6 client and relay
- Dynamic Host Configuration Protocol (DHCP) server and relay
- ► DHCPv6 server and relay
- ► HyperText Transfer Protocol (HTTP/1.1)
- ► Network Time Protocol (NTP) for IPv4 and IPv6
- Simple Mail Transfer Protocol (SMTP)
- Secure Shell (SSHv2/v3)
- ▶ TELNET
- ► Trivial File Transfer Protocol (TFTP)

Diagnostic Tools

- Active Fiber Monitoring (AFM) detects tampering on optical links
- Automatic link flap detection and port shutdown
- Built-In Self-Test (BIST)
- Cable fault locator (TDR)
- Connectivity Fault Management (CFM), Continuity Check Protocol (CCP) for use with ITU-T G.8032 ERPS
- ► Event logging via Syslog over IPv4
- Find-me device locator
- Optical Digital Diagnostic Monitoring (DDM)
- ▶ Ping polling for IPv4 and IPv6
- Port mirroring
 - » No limit on mirrored ports
 - » Up to 4 mirror (analyzer) ports for received traffic
 - » 1 mirror (analyzer) port for transmitted traffic
- VLAN mirroring (RSPAN)
- ▶ sFlow
- TraceRoute for IPv4 and IPv6
- UniDirectional Link Detection (UDLD)

Environmental Specifications⁵

- Operating temperature range:⁶
 -40°C to 75°C (-40°F to 167°F)
 +85°C (dry heat endurance test for 20 hours)
- Storage temperature range: -40°C to 85°C (-40°F to 185°F)
- Operating humidity range: 5% to 95% non-condensing
- Storage humidity range: 5% to 95% non-condensing
- Operating altitude: 3,000 meters maximum (9,843 ft)

Mechanical

- EN 50022, EN 60715 standardized mounting on rails
- ⁵ Refer to the Installation Guide for the full list of environmental tests.
- ⁶ Refer to the Installation Guide for more details on the safety approved power ratings and thermal conditions.
- ⁷ Requires primary and redundant power supplies.
- ⁸ Contact sales representative for availability.

	IE360				
Compliance Mark	ATEX, ⁸ CE, FCC, ICES, RCM, UKCA, UL, VCCI				
Hazardous Substances Compliance	RoHS, China-RoHS, JGSSI, REACH, SCIP, TSCA, WEEE				
Safety⁴	AS/NZS 62368-1 CAN/CSA C22.2 No.60950-22 CAN/CSA C22.2 No.61010-1 ⁸ CAN/CSA C22.2 No.61010-1-102 ⁸ CAN/CSA C22.2 No.62368-1 EN/IEC/UL 60950-22 EN/IEC/UL 61010-1 ⁸ EN/IEC/UL 61010-2-201 ⁸ EN/IEC/UL 62368-1				
Electromagnetic Immunity	EN 55035 IEC 61000-6-2				
Electrostatic discharge (ESD)	EN/IEC 61000-4-2, contact discharge: 6kV (level 3) air discharge: 8kV (level 3)				
Radiated susceptibility (RS)	EN/IEC 61000-4-3, radiated immunity: 10V/m (level 3) 20V/m (level X)				
Electrical fast transient (EFT)	EN/IEC 61000-4-4, signal port: 4kV (level X) DC power port: 4kV (level 4)				
Lighting/surge immunity (Surge)	EN/IEC 61000-4-5, installation class 4 for outdoor signal ports: line-to-earth: 6kV (level X) line-to-line: 2kV (level 3) DC power ports: line-to-earth: 2kV (level 3) line-to-line: 1kV (level 3)				
Conducted immunity (CS)	EN/IEC 61000-4-6, 10V (level 3)				
Power Frequency Magnetic Field	EN/IEC 61000-4-8, 100A/m cont. (level 5) 1,000A/m for 1s (level 5)				
Mains frequency voltage	EN/IEC 61000-4-16, DC power ports: 30V cont. (level 4) 300V for 1s (level 4)				
Damped oscillatory wave	EN/IEC 61000-4-18, signal ports: line-to-earth: 2.5kV (level 3) line-to-line: 1.0kV (level 3) DC power ports: line-to-earth: 2.5kV (level 3) line-to-line: 1.0kV (level 3)				
DC voltage dips and Interruption	EN/IEC 61000-4-29, voltage dips: △U 30% for 0,1s △U 60% for 0,1s voltage interruption: △U 100% for 0,05s ⁷				
Electromagnetic Emissions	AS/NZS CISPR 32, class A CISPR 32, class A EN 55032, class A EN 50121-4 / IEC 62236-4, class A EN 50121-5 / IEC 62236-5, class A EN/IEC 61000-6-4, class A FCC 47 CFR Part 15, subpart B, class A ICES-03, class A ICES-GEN, class A IEC 61850-3 VCCI, class A				
Industry					
Marine	DNV ⁸				
Power utility automation	IEC 61850-3 IEEE 1613				
PROFINET IO	Pl conformance class B (CC-B) ⁸ IEC 61158-1, IEC 61158-5-10, IEC 61158-6-10 (fieldbus type 10) IEC 61784-1, IEC 61784-2 (communication profile CPF 3)				
Railway applications					
Fixed installation for power supply	EN 50121-5, IEC 62236-5 EN 50125-2, IEC 62498-2				
Signalling and telecommunication	EN 50121-4, IEC 62236-4 EN 50125-3, IEC 62498-3				
Traffic controller assemblies	NEMA TS 2 ⁸				

IE360 Series | Industrial Ethernet Layer 3 Switches

Warranty

 Five-year limited hardware warranty. Refer to the Term & Policies page on the Allied Telesis web site.

COMPLIANCE	IE360
Environmental	
Connector unmating endurance	IEC 60512-99-002, under PoE++ @95W electrical load
Shock	IEC60068-2-27 operational: 20g, 11ms, half-sine non-operational: 65g, 11ms, half-sine IEC 50125-3 Section 4.13.2 20g, 11ms, half-sine IEC 60255-21-2 response: 10g, 11ms, half sine non-operational: 30g, 11ms, half sine (withstand) 10g, 16ms (bump, DIN rail mount) 20g, 16 ms (bump, wall mount)
Vibration	IEC60068-2-6 operational: 2g, @10-500Hz non-operational: 2g, @10-500Hz IEC 50125-3 Section 4.13.1 2.3 m/s ² , 5-2000 Hz IEC 60255-21-1 response: 1g, @10-150Hz endurance: 2g, @10-500Hz
Seismic	IEC 60255-21-3 2g x-axis, 1g y-axis, 1-35 Hz, single axis sine
Hazardous location	II 3G Ex ec IIC T4 Gc ⁸
c-UL-us	UL listed Industrial Control Equipment; see UL File XXXXX UL listed for Class I, Division 2, Group A, B, C, D; see UL File XXXXX UL listed for Class I, Zone Hazardous Locations; see UL File XXXXX
ATEX Directive 2014/34/EU	EN 60079-0 EN 60079-7 (Increased Safety)

⁸ Contact sales representative for availability.

Physical Specifications

PRODUCT	WIDTH X DEPTH X HEIGHT	WEIGHT	ENCLOSURE	MOUNTING	PROTECTION RATE
IE360-12GHX	91 x 158 x 153 mm (3.58 x 6.23 x 6.02 in)	DIN rail: 2.2 kg (4.88 lbs) Wall mount: 2.1 kg (4.64 lbs)	Aluminum/Stainless Steel Sheet Metal shell	DIN rail, wall mount	IP30
IE360-12GTX	91 x 158 x 153 mm (3.58 x 6.23 x 6.02 in)	DIN rail: 2.1 kg (4.64 lbs) Wall mount: 2.06 kg (4.54 lbs)	Aluminum/Stainless Steel Sheet Metal shell	DIN rail, wall mount	IP30

Power Characteristics

	INPUT VOLTAGE	COOLING	NO POE LOAD			FULL POE LOAD [®]		
PRODUCT			MAX POWER Consumption	MAX HEAT DISSIPATION	NOISE	MAX POWER Consumption	MAX HEAT DISSIPATION	NOISE
IE360-12GHX	18~57V DC10	fanless	29.9W	102.0 BTU/hr	-	406.5W	158.7 BTU/hr	-
IE360-12GTX	18~57V DC	fanless	25.0W	85.3 BTU/hr	-	-	-	-

⁹ The Max Power consumption at full PoE load includes the powered device's consumption and margin. The cooling requirements of the switch are smaller than the power draw, because most of the load is dissipated at the PoE powered device and along the cabling. Use these wattage and BTU ratings for facility capacity planning.

 10 Note: PoE sourcing requires the input voltage \geq 36V DC

Power over Ethernet Sourcing Characteristics

PRODUCT	ENABLED POE PORTS	MAX POE POWER BUDGET ¹¹	MAX POE SOURCING PORTS				
FNUDUGI			P0E (15W)	P0E+ (30W)	P0E++ (60W)	P0E++ (95W)	
IE360-12GHX	8	360W	8	8	6	3	
IE360-12GTX	-	-	-	-	-	-	

¹¹ The PoE power budget is shared among all ports; we recommend configuring dynamic PoE power allocation to optimize the power distribution.

RFC 919

RFC 922

RFC 932

RFC 950

RFC 951

Standa	ards and Protocols	RFC 1027	Proxy ARP
otaniac		BEC 1035	DNS client
		BEC 1042	Standard for the transmission of IP datagrams
AlliedWa	are Plus Operating System	11 0 10 12	over IEEE 802 networks
Version 5.5.5	5 · · · · · · · · · · · · · · · · · · ·	BEC 1071	Computing the Internet checksum
	-	BEC 1122	Internet host requirements
∆uthenti	ication	RFC 1191	Path MTU discovery
REC 1321	MD5 Message-Digest algorithm	BEC 1256	ICMP router discovery messages
DEC 1929	IP authoritication using koved MD5	BEC 1518	An architecture for IP address allocation with
111 0 1020	addicitication dailing Reyed MDD	11 0 1010	CIDB
Automat	tion and Control	BEC 1519	Classless Inter-Domain Bouting (CIDB)
Modbus/TCF		BEC 1542	Clarifications and extensions for BootP
IFC 61158	Industrial communication networks - Fieldbus	BEC 1591	Domain Name System (DNS)
	specifications - PROFINET	BFC 1812	Requirements for IPv4 routers
IEC 61784	Industrial communication networks -	BEC 1918	IP addressing
120 017 04	communication profile - PROFINET	BEC 2581	TCP congestion control
IFFE 1588-2	019 Precision Clock Synchronization Protocol	11 0 2001	
IEC/IEEE 618	350-9-3:2016 Precision time protocol profile for	IPv6 Fea	atures
	nower utility automation	BFC 1981	Path MTU discovery for IPv6
IEEE 037 23	8-2017 Precision time protocol profile for power	BFC 2460	IPv6 specification
ILLL 001.20	system applications	BFC 2464	Transmission of IPv6 packets over Ethernet
	system applications		networks
Border (Sateway Protocol (BGP)	RFC 3484	Default address selection for IPv6
BGP dynamic	canability	BFC 3587	IPv6 global unicast address format
RGP outhour	nd route filtering	BEC 3596	DNS extensions to support IPv6
BEC 1772	Application of the Border Gateway Protocol	RFC 4007	IPv6 scoped address architecture
11101112	(BGP) in the Internet	BEC 4193	Unique local IPv6 unicast addresses
REC 1997	BGP communities attribute	BEC 4213	Transition mechanisms for IPv6 hosts and
REC 2439	BGP route flan damning	11 0 1210	routers
REC 2545	Use of BGP-4 multiprotocol extensions for IPv6	BEC 4291	IPv6 addressing architecture
11 0 2040	inter-domain routing	BFC 4443	Internet Control Message Protocol (ICMPv6)
REC 2018	Boute refresh canability for BGP-4	BFC 4861	Neighbor discovery for IPv6
REC 3882	Configuring BGP to block Denial-of-Service	BEC 4862	IPv6 Stateless Address Auto-Configuration
11 0 0002	(DoS) attacks		(SLAAC)
RFC 4271	Border Gateway Protocol 4 (BGP-4)	BEC 5014	IPv6 socket API for source address selection
REC 4360	BGP extended communities	BEC 5095	Deprecation of type 0 routing headers in IPv6
RFC 4456	BGP route reflection - an alternative to full	RFC 5175	IPv6 Router Advertisement (RA) flags option
	mesh iBGP	RFC 6105	IPv6 Router Advertisement (RA) guard
RFC 4724	BGP graceful restart		()0
RFC 4760	Multiprotocol Extensions for BGP-4	Manage	ement
RFC 5065	Autonomous system confederations for BGP	AT Enterpris	e MIB including AMF Plus MIB and traps
RFC 5492	Capabilities Advertisement with BGP-4	Optical DDN	1 MIB
RFC 5925	The TCP Authentication Option	SNMPv1, v2	2c and v3
RFC 6793	BGP Support for Four-Octet Autonomous	ANSI/TIA-10	057 Link Layer Discovery Protocol-Media
	System (AS) Number Space		Endpoint Discovery (LLDP-MED)
RFC 7606	Revised Error Handling for BGP UPDATE	IEEE 802.1A	B Link Layer Discovery Protocol (LLDP)
	Messages	RFC 1155	Structure and identification of management
	Ŭ		information for TCP/IP-based Internets
Encrypti	ion (Management Traffic Only)	RFC 1157	Simple Network Management Protocol (SNMP)
FIPS 180-1	Secure Hash standard (SHA-1)	RFC 1212	Concise MIB definitions
FIPS 186	Digital signature standard (RSA)	RFC 1213	MIB for network management of TCP/IP-based
FIPS 46-3	Data Encryption Standard (DES and 3DES)		Internets: MIB-II
		RFC 1215	Convention for defining traps for use with the
Ethernet	t		SNMP
IEEE 802.2	Logical Link Control (LLC)	RFC 1227	SNMP MUX protocol and MIB
IEEE 802.3	Ethernet	RFC 1239	Standard MIB
IEEE 802.3a	b 1000BASE-T	RFC 1724	RIPv2 MIB extension
IEEE 802.3a	e 10 Gigabit Ethernet	RFC 2011	SNMPv2 MIB for IP using SMIv2
IEEE 802.3a	f Power over Ethernet (PoE)	RFC 2012	SNMPv2 MIB for TCP using SMIv2
IEEE 802.3a	n 10GBASE-T	RFC 2013	SNMPv2 MIB for UDP using SMIv2
IEEE 802.3a	t Power over Ethernet up to 30W (PoE+)	RFC 2578	Structure of Management Information v2
IEEE 802.3a	z Energy Efficient Ethernet (EEE)		(SMIv2)
IEEE 802.3b	t Power over Ethernet (PoE++)	RFC 2579	Textual conventions for SMIv2
IEEE 802.3u	100BASE-X	RFC 2580	Conformance statements for SMIv2
IEEE 802.3x	How control - full-duplex operation	RFC 2674	Definitions of managed objects for bridges with
IEEE 802.3z	1000BASE-X		trattic classes, multicast filtering and VLAN
		DEC 074	extensions
IPV4 Fea		KFC 2741	Agent extensibility (AgentX) protocol
KFC /68	User Datagram Protocol (UDP)	KFC 2819	RIVIUN MIB (groups 1,2,3 and 9)
KFU /91		RFC 2863	Interfaces group MIB
KFU /92	Internet Control Message Protocol (ICMP)	RFC 3176	show: a method for monitoring traffic in
KFC /93	Iransmission Control Protocol (TCP)	DEO O 444	switched and routed networks
KFU 826	Auuress Resolution Protocol (ARP)	KEC 3411	An architecture for describing SNMP
KFC 894	Stanuard for the transmission of IP datagrams		management frameworks

2 MIB extension Pv2 MIB for IP using SMIv2 Pv2 MIB for TCP using SMIv2 Pv2 MIB for UDP using SMIv2 cture of Management Information v2 v2) al conventions for SMIv2 ormance statements for SMIv2 nitions of managed objects for bridges with c classes, multicast filtering and VLAN nsions t extensibility (AgentX) protocol N MIB (groups 1,2,3 and 9) faces group MIB w: a method for monitoring traffic in ched and routed networks rchitecture for describing SNMP agement frameworks RFC 3412 Message processing and dispatching for the SNMP RFC 3413 SNMP applications RFC 3414 User-based Security Model (USM) for SNMPv3

RFC 3415 View-based Access Control Model (VACM) for SNMP

RFC 3416	Version 2 of the protocol operations for the SNMP
RFC 3417	Transport mappings for the SNMP
RFC 3418	MIB for SNMP
RFC 3621	Power over Ethernet (PoE) MIB
BEC 3635	Definitions of managed objects for the
	Ethernet-like interface types
BEC 3636	IEEE 802.3 MALLMIR
RFC 4022	MIB for the Transmission Control Protocol
III O IOLL	(TCP)
REC 4113	MIR for the User Datagram Protocol (UDP)
RFC 4188	Definitions of managed objects for bridges
REC 4292	IP forwarding table MIR
REC 4293	MIR for the Internet Protocol (IP)
REC 4318	Definitions of managed objects for bridges
	with BSTP
BEC 4560	Definitions of managed objects for remote ping
111 0 1000	traceroute and lookup operations
BEC 5424	The System protocol
REC 6527	Definitions of managed objects for VBBPv3
11 0 0021	
Multicas	t Support
Bootstrap Ro	uter (BSR) mechanism for PIM-SM
IGMP query s	solicitation
IGMP snoopi	ng (IGMPv1, v2 and v3)
IGMP snoopi	ng fast-leave
IGMP/MLD n	nulticast forwarding (IGMP/MLD proxy)
MLD snoopin	g (MLDv1 and v2)
PIM-SM and	SSM for IPv6
RFC 2236	Internet Group Management Protocol v2
	(IGMPv2)
RFC 2710	Multicast Listener Discovery (MLD) for IPv6
RFC 2715	Interoperability rules for multicast routing
	protocols
RFC 3306	Unicast-prefix-based IPv6 multicast addresses
RFC 3376	IGMPv3
RFC 3590	Source Address Selection for the Multicast
	Listener Discovery (MLD) Protocol
RFC 3810	Multicast Listener Discovery v2 (MLDv2) for
	IPv6
RFC 3956	Embedding the Rendezvous Point (RP) address
	in an IPv6 multicast address
RFC 3973	PIM Dense Mode (DM)
RFC 4541	IGMP and MLD snooping switches
RFC 4604	Using IGMPv3 and MLDv2 for source-specific
	multicast
RFC 4607	Source-specific multicast for IP
RFC 7761	Protocol Independent Multicast - Sparse Mode
	(PIM-SM): Protocol specification
Open Sh	ortest Path First (OSPF)
OSPF link-loc	cal signaling
OSPF MD5 a	uthentication
USPF restart	signaling
Out-of-band	LSDB resync
KFC 1245	USPF protocol analysis
RFC 1246	Experience with the OSPF protocol
RFC 1370	Applicability statement for OSPF
RFC 1765	OSPF database overflow
DEC 0000	OCDEV0

- BEC 2370 OSPF opaque LSA option RFC 2740 OSPFv3 for IPv6 RFC 3101
- OSPF Not-So-Stubby Area (NSSA) option RFC 3509 Alternative implementations of OSPF area border routers
- Graceful OSPF restart RFC 3623
- RFC 3630 Traffic engineering extensions to OSPF RFC 4552
- Authentication/confidentiality for OSPFv3 RFC 5329 Traffic engineering extensions to OSPFv3
- REC 5340 OSPFv3 for IPv6 (partial support)

Quality of Service (QoS)

IE

R

R

R

R

R

-	
EE 802.1p	Priority tagging
FC 2211	Specification of the controlled-load network
	element service
FC 2474	DiffServ precedence for eight queues/port
FC 2475	DiffServ architecture
FC 2597	DiffServ Assured Forwarding (AF)
FC 2697	A single-rate three-color marker

8 | IE360 Series

over Ethernet networks

presence of subnets

Broadcasting Internet datagrams

Subnetwork addressing scheme

Bootstrap Protocol (BootP)

Broadcasting Internet datagrams in the

Internet standard subnetting procedure

IE360 Series | Industrial Ethernet Layer 3 Switches

RFC 2698 RFC 3246	A two-rate three-color marker DiffServ Expedited Forwarding (EF)
Resilien	cy Features Media Bedundancy Protocol (MBP)
IEEE 802.3ac	d Static and dynamic link aggregation
EEE 802.1ag	CFM Continuity Check Protocol (CCP)
IEEE 802.1D	MAC bridges
IEEE 802.1s	Multiple Spanning Tree Protocol (MSTP)
IEEE 802.1W	2 / Y.1344 Ethernet Ring Protocol (RSTP)
	(ERPS)
RFC 5798	Virtual Router Redundancy Protocol version 3 (VRRPv3) for IPv4 and IPv6
Routing	Information Protocol (RIP)
RFC 1058	Routing Information Protocol (RIP)
RFC 2080 RFC 2081	RIPng protocol applicability statement
RFC 2082	RIP-2 MD5 authentication
RFC 2453	KIPV2
Security	Features
SSH remote I	ogin SLv3
TACACS+ Ac	counting. Authentication. Authorization (AAA)
IEEE 802.1AE	E MAC Security (MACsec), cipher suite:
	GCM-AES-128, GCM-AES-256,
IEEE 802.1X	Authentication protocols (TLS, TTLS, PEAP and
	MD5)
IEEE 802.1X	Multi-supplicant authentication
REC 2818	HTTP over TLS ("HTTPS")
RFC 2865	RADIUS authentication
RFC 2866	RADIUS accounting

RFC 2868	RADIUS attributes for tunnel protocol support
RFC 2986	PKCS #10: certification request syntax
	specification v1.7
RFC 3579	RADIUS support for Extensible Authentication Protocol (FAP)
RFC 3580	IEEE 802.1x RADIUS usage guidelines
RFC 3748	Extensible Authentication Protocol (EAP)
RFC 4251	Secure Shell (SSHv2) protocol architecture
RFC 4252	Secure Shell (SSHv2) authentication protocol
RFC 4253	Secure Shell (SSHv2) transport layer protocol
RFC 4254	Secure Shell (SSHv2) connection protocol
RFC 5176	RADIUS CoA (Change of Authorization)
RFC 5246	Transport Layer Security (TLS) v1.2
RFC 5280	X.509 certificate and Certificate Revocation
	List (CRL) profile
RFC 5425	Transport Layer Security (TLS) transport
	mapping for Syslog
RFC 5656	Elliptic curve algorithm integration for SSH
RFC 6125	Domain-based application service identity
	within PKI using X.509 certificates with TLS
RFC 6614	Transport Layer Security (TLS) encryption for
	RADIUS
RFC 6668	SHA-2 data integrity verification for SSH
Service	S
RFC 854	Telnet protocol specification
RFC 855	Telnet option specifications

RFC 854	Telnet protocol specification
RFC 855	Telnet option specifications
RFC 857	Telnet echo option
RFC 858	Telnet suppress go ahead option
RFC 1091	Telnet terminal-type option
RFC 1350	The TFTP protocol (revision 2)
RFC 1985	SMTP service extension
RFC 2049	MIME
RFC 2131	DHCPv4 (server, relay and client)
RFC 2132	DHCP options and BootP vendor extensions
RFC 2616	Hypertext Transfer Protocol - HTTP/1.1
RFC 2821	Simple Mail Transfer Protocol (SMTP)

	RFC 2822	Internet message format
	RFC 3046	DHCP relay agent information option (DHCP
		option 82)
	RFC 3315	Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
	RFC 3396	Encoding Long Options in the Dynamic Host
		Configuration Protocol (DHCPv4)
	RFC 3633	IPv6 prefix options for DHCPv6
	RFC 3646	DNS configuration options for DHCPv6
	RFC 3993	Subscriber-ID suboption for DHCP relay agent
	DE0 4054	
	RFC 4954	SMTP Service Extension for Authentication
	RFC 5905	Network Time Protocol (NTP) version 4
		N Features
	Generic VI A	N Registration Protocol (GVRP)
	IFFF 000 1or	Dravidar bridges (VII AN steaking Q in Q)
IEEE OUZ. IAU FIUVIUEI DIIUYES (VEAN STACKING, Q-III-Q)		

IEEE 802.1ad Provider bridges (VLAN stacking, Q-in-Q)

IEEE 802.1Q Virtual LAN (VLAN) bridges

IEEE 802.1v VLAN classification by protocol and port

IEEE 802.3acVLAN tagging

Feature Licenses

NAME	DESCRIPTION	INCLUDES
AT-IE360-FL01	IE360 Series Premium license	 BGP (64 routes) BGP+ (64 routes) OSPF (256 routes) OSPFv3 (256 routes) PIM-SM, DM and SSM (256 routes) PIMv6-SM and SSM (256 routes) RIP (256 routes) RIPng (256 routes)

Ordering Information

Switches The DIN rail and wall mount kits are included. The management serial console cable is NOT included

AT-IE360-12GHX-xx¹² 8x 10/100/1000T, 2x 100/1000X SFP, 2x 1G/10G SFP+ Industrial Ethernet, Layer 3 Switch, PoE++ Support

AT-IE360-12GTX-xx¹² 8x 10/100/1000T, 2x 100/1000X SFP, 2x 1G/10G SFP+ Industrial Ethernet, Layer 3 Switch

Where xx = 80 standard Country of Origin 980 TAA compliant Country of Origin

Power Supplies

AT-IE048-120-20 120W @48Vdc, Industrial AC/DC power supply, DIN rail mount (5 years warranty)

AT-IE048-240-20 240W @48Vdc, Industrial AC/DC power supply, DIN rail mount (5 years warranty)

AT-IE048-480-20 480W @48Vdc, Industrial AC/DC power supply, DIN rail mount (5 years warranty)

AT-SDR120-48 120W @48Vdc, Industrial AC/DC power supply, DIN rail mount

AT-SDR240-48 240W @48Vdc, Industrial AC/DC power supply, DIN rail mount

AT-SDR480-48 480W @48Vdc, Industrial AC/DC power supply, DIN rail mount

Supported SFP Modules Refer to the installation guide for the recommended Max. Operating Temperature according to the selected SFP module.

10Gbps SFP+ Modules

AT-SP10BD10/I-12 10 km, 10G BiDi SFP, LC, SMF, (1270 Tx/1330 Rx)

AT-SP10BD10/I-13 10 km, 10G BiDi SFP, LC, SMF, (1330 Tx/1270 Rx)

AT-SP10BD20-12 20 km, 10G SFP, LC, SMF, TAA¹² (1270 Tx/1330 Rx)

AT-SP10BD20-13 20 km, 10G SFP, LC, SMF, TAA¹² (1330 Tx/1270 Rx) AT-SP10BD40/I-12 40 km, 10G SFP, LC, SMF, I-Temp, TAA¹² (1270 Tx/1330 Rx)

AT-SP10BD40/I-13 40 km, 10G SFP, LC, SMF, I-Temp, TAA¹² (1330 Tx/1270 Rx)

AT-SP10BD80/I-14 80 km, 10G SFP, LC, SMF, I-Temp, TAA¹² (1490 Tx/1550 Rx)

AT-SP10BD80/I-15 80 km, 10G SFP, LC, SMF, I-Temp, TAA¹² (1550 Tx/1490 Rx)

AT-SP10ER40a/I 40 km, 10G SFP, LC, SMF,1550 nm, I-Temp, TAA¹²

AT-SP10LRa/I 10 km, 10G SFP, LC, SMF,1310 nm, I-Temp, TAA¹²

AT-SP10SR 300 m, 10G SFP, LC, MMF,850 nm, TAA¹²

AT-SP10SR/I-90 300 m, 10G SFP, LC, MMF,850 nm, I-Temp, TAA¹²

AT-SP10TM 20 m, 1/10G SFP, RJ-45, I-Temp, TAA¹²

AT-SP10ZR80/I 80 km, 10G SFP, LC, SMF,1550 nm, I-Temp

1000Mbps SFP Modules

AT-SPBD10-13 10 km, 1G BiDi SFP, LC, SMF, I-Temp (1310 Tx/1490 Rx)

AT-SPBD10-14 10 km, 1G BiDi SFP, LC, SMF, I-Temp (1490 Tx/1310 Rx)

AT-SPBD20-13/I 20 km, 1G BiDi SFP, SC, SMF, I-Temp, (1310 Tx/1490 Rx)

AT-SPBD20-14/I 20 km, 1G BiDi SFP, SC, SMF, I-Temp, (1490 Tx/1310 Rx)

AT-SPBD20LC/I-13 20 km, 1G BiDi SFP, LC, SMF, I-Temp, TAA¹² (1310 Tx/1490 Rx)

AT-SPBD20LC/I-14 20 km, 1G BiDi SFP, LC, SMF, I-Temp, TAA¹² (1490 Tx/1310 Rx)

AT-SPBD40-13/I 40 km, 1G BiDi SFP, LC, SMF, I-Temp, (1310 Tx/1490 Rx)

AT-SPBD40-14/I 40 km, 1G BiDi SFP, LC, SMF, I-Temp, (1490 Tx/ 1310 Rx) AT-SPEX/E-90 2 km, 1000EX SFP, LC, MMF, 1310 nm, Ext. Temp, TAA¹²

AT-SPLX10a 10 km, 1000LX SFP, LC, SMF, 1310 nm, TAA¹²

AT-SPLX10/I 10 km, 1000LX SFP, LC, SMF, 1310 nm, I-Temp

AT-SPLX10/E-90 10 km, 1000LX SFP, LC, SMF, 1310 nm, Ext. Temp, TAA¹²

AT-SPLX40 40 km, 1000LX SFP, LC, SMF, 1310 nm

AT-SPLX40/E-90 40 km, 1000LX SFP, LC, SMF, 1310 nm, Ext. Temp, TAA¹²

AT-SPSX-90 550 m, 1000SX SFP, LC, MMF, 850 nm, TAA¹²

AT-SPSX/I-90 550 m, 1000SX SFP, LC, MMF, 850 nm, I-Temp, TAA¹²

AT-SPSX/E-90 550 m, 1000SX SFP, LC, MMF, 850 nm, Ext. Temp, TAA¹²

AT-SPTX-90 100 m, 10/100/1000T SFP, RJ-45, TAA¹²

AT-SPTX/I 100 m, 10/100/1000T SFP, RJ-45, I-Temp

AT-SPZX120/I 120 km, 1000LX SFP, LC, SMF, 1550 nm, I-Temp, TAA¹²

100Mbps SFP modules

AT-SPFX/2-90 2 km, 100FX SFP, LC, MMF, 1310 nm, TAA¹²

AT-SPFX30/I-90 30 km, 100FX SFP, LC, SMF, 1310 nm, I-Temp, TAA¹²

Passive Interconnection Cables

AT-SP10TW1 Twinax direct attach cable (1 meter)

AT-SP10TW3 Twinax direct attach cable (3 meter)

Passive Interconnection Cables

AT-VT-Kit3 Management cable (USB to serial console)

¹² Trade Act Agreement compliant

